코로나 사태 영향에 대한 공사지연분석 핵심쟁점 및 이슈

2020.08.25

임정주 대표

Contents

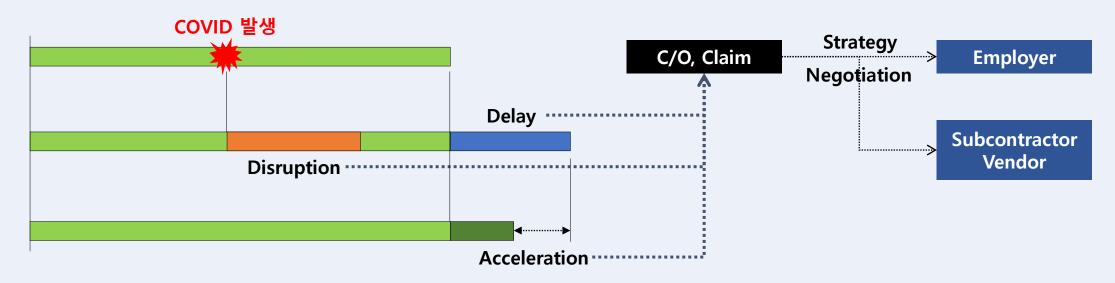
1. Overview

2. Delay Claim

- 1) 지연 분석방법(Delay analysis method) 선정
- 2) 동시지연(Concurrent delay) 식별
- 3) 합리적인 지연기간(Delay period) 산정
- 4) COVID 발생 직전의 지연기간(Delay period) 인식

3. Disruption Claim

- 1) 방해/간섭 분석방법(Disruption analysis method) 선정
- 2) 인과관계(Causation) 입증

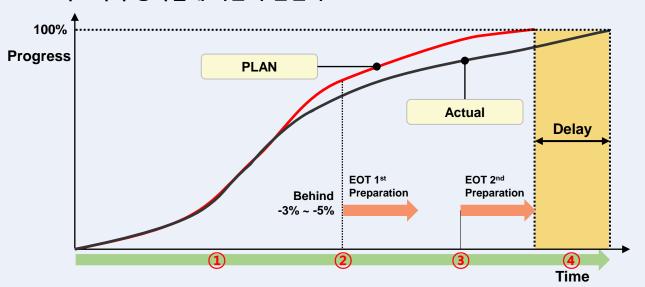

4. Acceleration Claim

- 1) Constructive acceleration
- 2) Acceleration plan

1 Overview

1) Background

- COVID로 인하여 공사지연이 발생하였고 이에 따라 간접비용이 발생하였음.
- 또한 공사중단, 간섭 등의 Disruption이 발생하여 인원, 장비 등의 직접비용이 발생하였음.



- 공사지연에 따른 Delay & Disruption Claim 협의가 주요 이슈가 될 것으로 보이나, 그에 따른 Acceleration (발주자 관점에서는 Mitigation) 협의도 주요 이슈가 될 것으로 보임.
- 특히 EOT Claim 협의가 완료되지 않은 상황에서의 Acceleration은 보상에 대한 명확한 기준이 합의되기 어렵기 때문에 추가적으로 분쟁이 발생할 수 있음.
- COVID가 다시 확산됨으로 인하여, 장기화 되어갈 것으로 예상되기 때문에 계약참여자간에 손실을 최소화할 수 있는 방안에 대한 검토가 필요함.

1 Overview

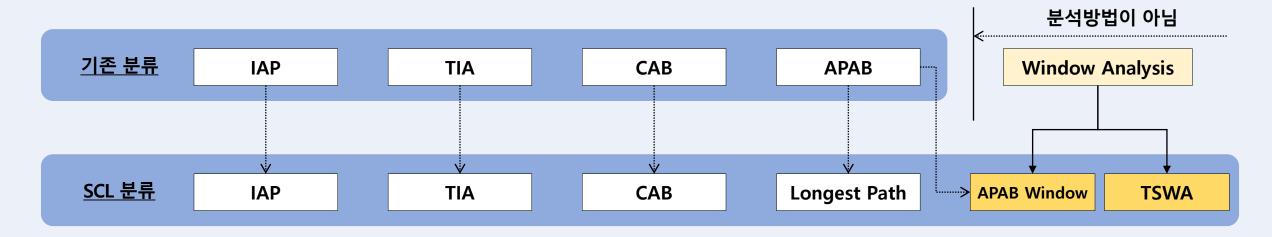
2) 클레임 대응전략

• 프로젝트의 수행시점에 따른 추진전략

코로나가 완전하게 마무리되는 상황은 희박할 것으로 예상됨. 따라서 코로나가 종료되기를 기다렸다가 최종 클레임을 제출하는 것보다는 프로젝트의 상황에 맞추어 특정 시점을 Cutoff로 해서 제출/협상하는 것이 유리할 것으로 사료됨.

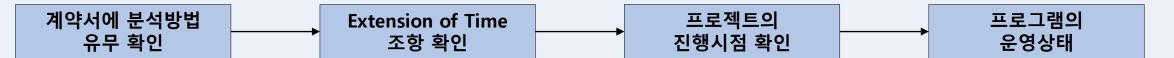
- ① : 명확하게 지연이 나타나지 않고 초기단계라면 MPR 선에서 진행
- ②: 명확하게 지연이 발생했고 Recovery가 어렵다고 판단되면, 1차 EOT클레임 준비 필요 (제출여부는 상황을 지켜본 후 진행)
- ③ : 협상력이 나빠지기 전에 (주요한 마일스톤 이전) EOT 작성, 제출 필요
- ④: 당초 완료일이 경과한 단계라면, 코로나를 제외한 다른 이벤트에 대한 협의를 진행할 필요가 있으므로 EOT 협의를 빨리 진행할 필요가 있음.

• COVID 사태 장기화에 따른 대응방안

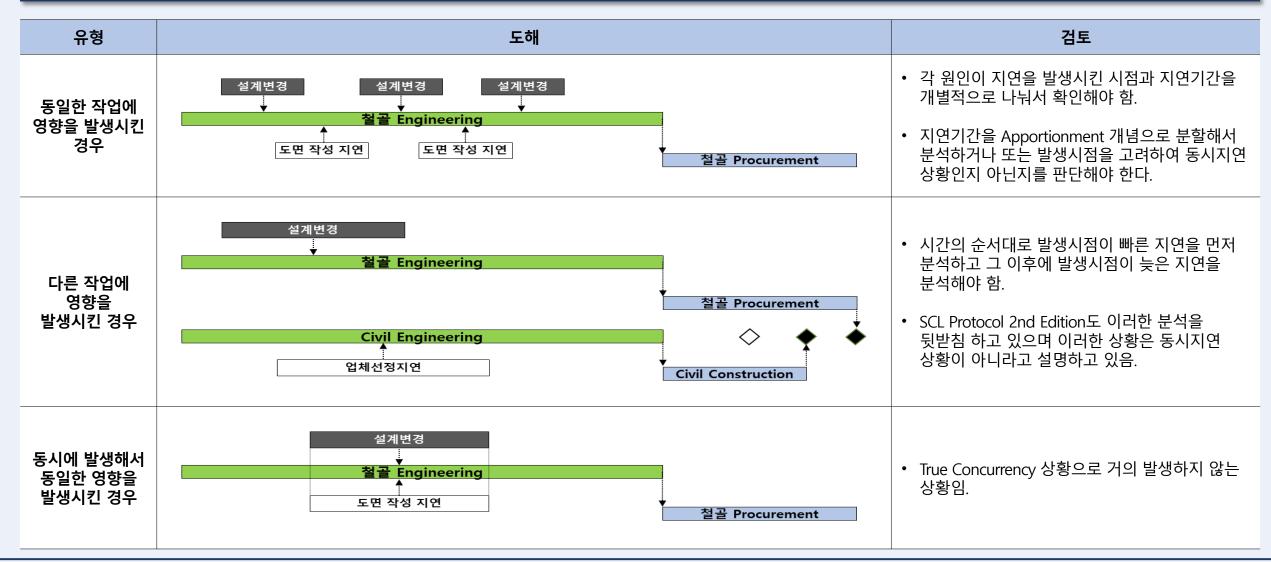

구분	내용
Program	 MPR로 제출되는 Program에 프로젝트의 지연을 정확하게 표현하여 제출해야 함. 중요한 지연은 Report 제출로 그치지 말고, 별도 Letter로 Communication을 유지해야 함. EOT, Revised Program의 협의가 어려운 경우 변경된 Plan %를 MPR에 추가로 포함시켜 Communication
Request	 클레임으로 청구 가능한 항목에 대한 손실을 최소화하기 위한 방안을 발주자에게 요청하고 기록을 유지 발주자가 적절한 대응, 조치를 취하지 않는 경우 추후 이를 근거로 클레임에 대한 청구 근거로 활용
Disruption	 Suspension 상황이 재발하기보다는 생산성이 저하되는 상황이 장기적으로 지속될 가능성이 높음 따라서 생산성 저하 클레임을 분석하기 위한 데이터의 확보, 정리작업이 필요함.
Mitigation	 Mitigation을 입증하기 위한 Evidence가 부족한 경우가 많은 편으로 Evidence 확보, 정리가 필요함. 사태가 장기화되면 간접비 손실이 크게 증가하기 때문에 간접인력의 효율적인 운용계획을 검토하고 이에 대하여 발주자와의 협의가 필요함.

1) 지연 분석방법(Delay analysis method) 선정

Method	Analysis Type	Critical Path Determined	Delay Impact Determined	내용
Impacted As-Planned Analysis	Cause & Effect	Prospectively	Duo ano ativah	• Baseline과 Fragnet으로 분석하는 방법이며, 사용하기에 쉽지만 Actual을 고려하지 않기 때문에 합리적이지 않음.
Time Impact Analysis		Contemporaneously	Prospectively	• Updated Program과 Fragnet을 필요로 하며, 가장 합리적인 분석방법으로 인정 받고 있음.
Time Slice Window Analysis	Effect & Cause	Contemporaneously Cause Retrospectively		• Updated Program을 필요로 하며, Window Analysis 방법 중하나이며, 월별로 CP를 확인하는 방법임.
As-Planned v As-Built Window Analysis				• Baseline, As-built data를 필요로 하며, Window Analysis 방법 중 하나이며, 프로그램을 꼭 써야 하는 것은 아님.
Retrospective Longest Path Analysis			Retrospectively	• Baseline과 As-Built Program을 필요로 하며 Longest Path를 추적하여 확인함. CP의 변동성을 인식하기는 어려움.
Collapsed As-Built Analysis	Cause & Effect	Retrospectively		• As-Built Program, Fragnet을 필요로 하며, Updated Program이 있다면 시간의 반대 순으로 진행하는 방법임.


5

1) 지연 분석방법(Delay analysis method) 선정


- SCL Protocol은 일반적으로 알려진 IAP, TIA, CAB, APAB 방법 중 APAB 방법에 대한 분류를 재정의하였음. 즉 기존의 Window Analysis 개념을 합하며 APAB Window Analysis와 Time Sliced Window Analysis로 설명하고 있음.
- 기존의 APAB 개념은 Retrospective Longest Path Analysis와 거의 비슷함.
- 그러나 TSWA는 분석방법이라기보다는 단지 Monthly Updated Program에 대한 설명에 불과하며, APAB Window Analysis는 개념적으로 APAB와 크게 다르지 않는데, 부가적인 설명을 하고 있음.
- 따라서 SCL Protocol 구분 이외의 다른 일반적인 방법을 충분히 고려할 필요가 있으며, 무조건 SCL Protocol 구분만 고려할 필요는 없음.

1) 지연 분석방법(Delay analysis method) 선정

Step	내용	Step	내용
계약서에 분석방법 유무 확인	 Project Controls Specification For each change order request, a "Time Impact Analysis" (TIA) shall be prepared and submitted as part of the Change Order Request documentation when additional time is being requested as part of the Change Order 	프로젝트의 진행시점 확인	IAP TIA APAB
Extension of Time 조항 확인	 The Contractor shall be entitled subject to Sub-Clause 20.1 [Contractor's Claims] to an extension of the Time for Completion if and to the extent that completion for the purposes of Sub-Clause 10.1 [Taking Over of the Works and Sections] is or will be delayed by any of the following causes: 	프로그램의 운영상태	 CPM 으로 구성된 Program이 있는지 여부 확인 Baseline으로 승인을 받았는지 여부 확인 Updated Program이 있는지 확인 As-Built Program이 있는지

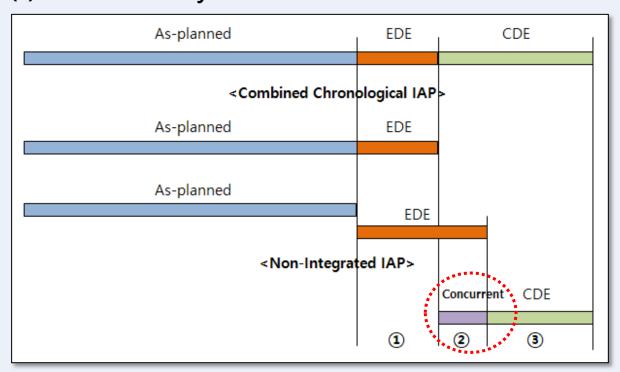
2) 동시지연(Concurrent delay) 식별

2) 동시지연(Concurrent delay) 식별 – Impacted As-Planned

(1) Combined Chronological Impacted As-Planned (CC-IAP)

Combined impacted liability table			Cumulative delay	
Event	Event type	Event type Impacted completion date		CDE
Baseline		1-Jan-09		
001	EDE	2-Jan-09	1	
002	EDE	5-Jan-09	3	
003	CDE	8-Jan-09		3
004	EDE	10-Jan-09	2	
005	CDE	15-Jan-09		5
006	CDE	15-Jan-09		0
007	EDE	18-Jan-09	3	

- Baseline에 EDE와 CDE를 넣어서 지연기간을 계산하는 방법임.
- 발생한 순서에 따라 입력하고 지연기간을 각각 계산해서 더함.


(2) Non-Integrated Impacted As-Planned (NI-IAP)

• Baseline에 EDE와 CDE를 넣는 것은 동일하지만 각각 입력하여 2개의 프로그램이 생성되며 각각 지연기간을 계산함.

(3) Concurrent Delay의 식별

9

- CC-IAP에서 CDE를 빼면 순수한 EDE에 의한 기간 ①이 산출되며, 이 기간은 Compensable Delay기간에 해당됨.
- ①기간은 NI-IAP의 EDE기간보다 짧아지는데, 그 차이가 ②번이며 Approximate Concurrency로 인식될 수 있음.
- ③기간은 Non-excusable Delay로 LD가 부과되는 기간임.

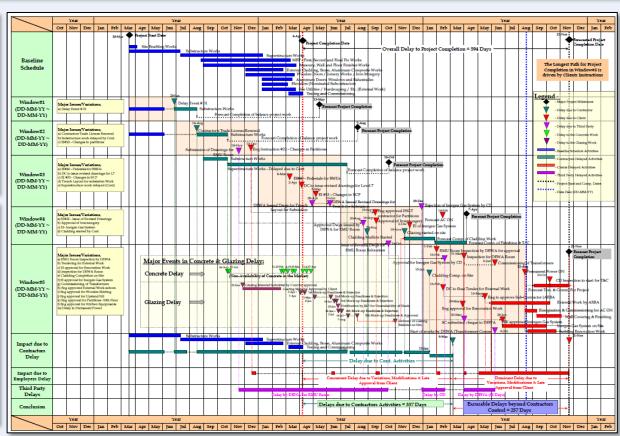
2) 동시지연(Concurrent delay) 식별 – Time Impact Analysis

							Cumul	Cumulative delay	
Event (fragnet)	Event type	Event actual start date	Base schedule	Base schedule data date	Projected completion date	Net loss/gain	EDE	CDE	Concurrent
			Baseline	1-Jun-08	1-Jan-09				
001	EDE	3-Jun-08		1-Jun-08	2-Jan-09	1	1		
002	EDE	5-Jun-08		1-Jun-08	5-Jan-09	3	3		
			UD01	30-Jun-08	5-Jan-09	0			
003	CDE	2-Jul-08		30-Jun-08	8-Jan-09	3			3
004	EDE	2-Jul-08		30-Jun-08	10-Jan-09	2	2		
			UD02	31-Jul-08	6-Jan-09	-4		-4	
			UD02A	14-Aug-08	8-Jan-09	2		2	
005	CDE	15-Aug-08		31-Jul-08	15-Jan-09	7		7	
		-	UD03	31-Aug-08	14-Jan-09	-1		-1	
006	CDE	4-Sep-08		31-Aug-08	15-Jan-09	1			1
007	EDE	7-Sep-08		31-Aug-08	18-Jan-09	3	3		
					Totals:	17	9	4	4

- 003 CDE Event는 Concurrent Delay로 계산되었음. 004 EDE Event와 동시에 시작되었고 EDE는 5일의 영향을 발생시켰기 때문에 겹치는 기간인 3일만 Concurrent Delay로 계산되고, 추가적인 2일은 Employer가 책임지는 기간으로 계산되었음.
- 006 CDE Event는 Concurrent Delay로 계산되었음. 007 EDE Event가 4일의 영향을 발생시켰기 때문에 겹치는 1일이 Concurrent Delay로 계산되었음. (그러나 이런 계산은 Event의 발생시점을 고려하였을 때 적절하지는 않은 것으로 판단됨)
- 분석 전에 Event 성격을 Concurrent Event로 규정하고, 분석을 통하여 Concurrent 기간을 계산하는 것도 가능한 방법임.

2) 동시지연(Concurrent delay) 식별 – Time Slice Window Analysis

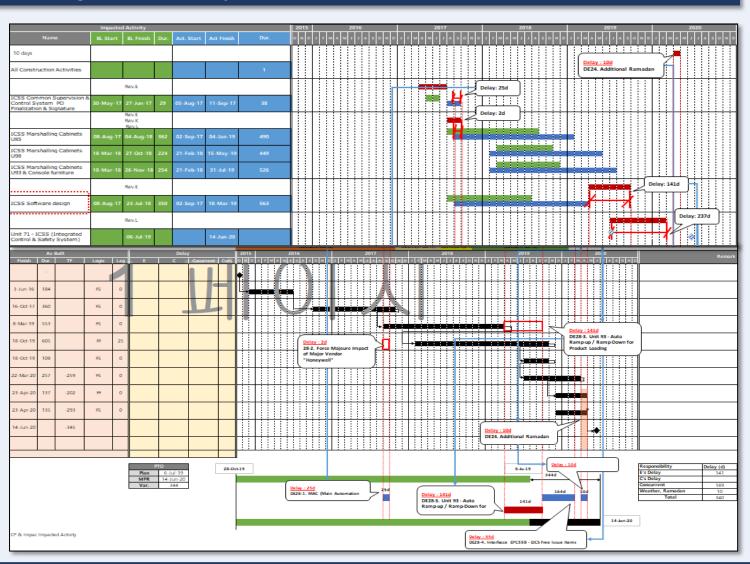
Window	Projected Completion	Projected Delay (Overall / in Period)	Critical (Longest Path)
August 2013	22 November 2016	0CD/0CD	Near Critical (27CD of Float)
November 2013	22 November 2016	0CD/0CD	Concurrently Critical (1CD of Float)
February 2014	10 April 2017	139CD/139CD	Yes
May 2014	7 April 2017	136CD/-3CD	Yes
August 2014	7 April 2017	136CD/0CD	Yes
November 2014	7 April 2017	136CD/0CD	Yes
February 2015	1 April 2017	130CD/-6CD	Yes
May 2015	22 March 2017	120CD/-10CD	Concurrently Critical
August 2015	22 March 2017	120CD/0CD	Concurrently Critical
November 2015	22 March 2017	120CD/0CD	Concurrently Critical (5CD float)
February 2016	4 March 2017	102CD/-18CD	No mitigation measures taken
May 2016	18 March 2017	116CD/14CD	No (works complete)
August 2016	1 March 2017	99CD/-17CD	No (works complete)
November 2016	1 March 2017	99CD/0CD	No (works complete)
February 2017	7 March 2017	106CD/7CD	No (works complete)


- TSWA는 Fragnet을 넣지 않고 Updated Program의 분석을 통하여 지연기간을 계산함.
- <u>각 Updated Program의 Critical Path를 구성하는 로직</u>
 중 2개 이상의 Activity가 있는 경우 Concurrent
 Delay로 계산함.
- TSWA는 APAB Window Analysis와 비슷하지만 Cutoff를 기준으로 미래지연을 위주로 결과를 분석하는 방법에 가까움. 즉 CP Activity의 변경을 추적하기 보다는 CP Activity가 결정하는 미래일정을 분석함.
- 그러나 개념적으로 보면 분석방법으로 보기에는 애매하며, 단순하게 Updated Program을 분석하는 수준의 방법임. 따라서 아래와 같이 Updated Program이 정상적으로 유지되지 않는 경우 분석의 신뢰성이 담보되기 어려움.
 - 완료시점이 거의 변하지 않는 경우
 - 로직의 변경이 과도하게 많이 발생한 경우
 - 비합리적인 일정의 조정이 있는 경우

2) 동시지연(Concurrent delay) 식별 – As-Planned v As-Built Window Analysis

Window Ref.	Planned Start	Planned Finish	Actual Start	Actual Finish	Start var. (less prev. WLV)	Finish var. (less prev. WLV)	WLV
CP1-001	1-Jan-06	7-Feb-06	6-Jan-06	12-Feb-06	5	_	5
CP1-002	8-Feb-06	12-Feb-06	13-Feb-06	30-May-06	-	102	102
CP1-003	13-Feb-06	28-Feb-06	31-May-06	28-June-06	-	13	13

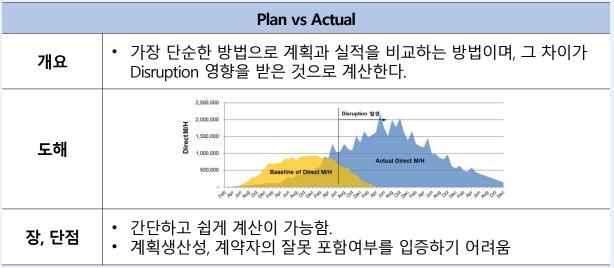
Window Ref. CP	Description	WLV	CDE	EDE	Liability Assessment
CP1-001	Install pipe	5		5	Delayed site access (5 days)
CP1-002	Test pipe	102	82	20	Pipe repair (80 days), late
					instruction (20 d), plant
					breakdown (2 days)
CP1-003	Handover	13		13	Additional back-fill (10 days),
					additional manhole (3 days)


- APAB와 거의 비슷한 방법이나 지연의 기간이 Window Level에서 나눠서 정리됨.
- Window 구간으로 나눠서 지연을 인식한 이후에 그 지연이 발생한 원인을 분석하는 과정에서 Concurrent Delay가 식별될 수 있음.

• Updated Program이 없는 경우 사용되기 때문에 세부적인 분석이 쉽지는 않으며, 결국 Baseline의 Float에 따라 Dominant Cause를 결정하고 그 결과에 따라 Concurrent Delay를 판단해야 함.

2) 동시지연(Concurrent delay) 식별 – Retrospective Longest Path Analysis

- 완료시점에서 역으로 CP를 추적하면서 As-Built Program의 Critical Path를 식별함 Industry Practice 및 Float를 고려하여 합리적인 경로를 확인함.
- 확인된 As-Built Critical Path 및 Critical Activity의 Plan일정을 같이 비교해서 특정한 구간에 지연이 발생된 것을 인식할 수 있음.
- 그 지연된 구간은 특별한 설명이 있지 않는 한 기본적으로 시공자의 지연임. 따라서 특정한 구간을 지연시킨 발주자의 Event가 있는지 확인 (Event는 Critical Activity와 관련이 있어야 함.) 만약 있다면 그 지연 기간은 발주자의 지연임.
- Critical Activity와 관련이 없는 발주자의 Event가 발생했다면 Concurrent Delay 여부를 확인해야 함.
- 즉 발주자의 Event가 영향을 미친 Impacted
 Activity의 Float 변화와 As-Built Critical Path상의
 Critical Activity의 Float 변화를 비교하여 Concurrent
 Delay 여부를 확인할 수 있음.


3) 합리적인 지연기간(Delay period) 산정

구분	도해	고려사항
관련된 작업의 계획일정이 COVID 발생과 통보시점 이후인 경우	COVID 발생 Notice Plan 일정 지연기간	 관련된 작업의 시작시점이 도래하기 전까지의 기간은 Float에 해당하므로 이 기간을 지연기간에 산정하면 안 됨 관련된 작업의 시작시점이 경과하면, Time bar 기간 내에 다시 Notice를 준비해야 함. 지연기간은 Plan의 시작일정 이후로 계산됨.
관련된 작업의 계획일정이 COVID 발생과 통보시점 이전인 경우	Plan 일정 COVID 발생 Notice Time bar 초과로 가정 지연기간	 관련된 작업이 단지 프로그램에 포함되어 제출되었다고 해서 클레임에 대한 권리가 발생하는 것은 아님. Plan 시작일로 지연기간을 무리하게 계산하면 Time bar에 따라 권리를 상실할 수 있음. 지연기간은 Notice 시점 이후부터 계산하는 것이 바람직함.
관련된 작업의 계획일정이 COVID 발생과 통보시점 사이인 경우	COVID 발생 Plan 일정 Notice 지연기간	 Plan일정과 Notice시점의 차이가 Time bar 이내이면 지연기간은 Plan의 시작일 이후부터 계산할 수 있음. 그러나 Plan일정 후에 Time bar가 경과하였다면 Notice 시점 이후부터 계산하는 것이 바람직함.
다른 문제가 원인으로 지연이 발생한 상황에서 COVID가 발생한 경우	Plan 일정 Notice COVID 발생 지연기간	 COVID로 인하여 추가적인 지연이 발생한 경우에 추가적인 Notice가 필요함. 종료되지 않는 경우에 매월 지연상황을 지속적으로 Update 해야 함.

4) COVID 발생 직전의 지연기간(Delay period) 인식

유형 내용 지연이 • 이런 상황은 시공자에게 유리한 상황에 가까우며, 코로나로 인한 지연만 분석하면 됨. 보고되지 • 물론 과거에 발주자가 지연을 확인하고 만회를 지시한 기록이 있었거나 시공자가 제출한 월간보고서의 공정표에 발주자가 코멘트를 않은 경우 한 상황이라면 추가적인 검토가 더 필요함. <유의사항> Baseline 공기연장을 승인 받지 못했다고 해서 코로나로 인 한 지연기간을 '4개월+a'로 계산해서는 안 됨. 지 4개월 **Extension of Time** 연은 이미 4개월이 발생한 것이고 (발생한 지연은 불변임), 공기연장을 인정한다는 것은 4개월 내에 시간의 3개월 궁름 공기연장승인 서 어떤 계약당사자가 책임을 얼마나 져야 하는지 를 결정하는 문제이기 때문에 4개월의 지연은 여 지연이 전히 유효함. 보고된 코로나로 인한 예상공정표 경우 따라서 이런 상황에서는 제출된 지연기간은 그대 로 둔 상태에서 코로나 사태로 인하여 추가로 발 생한 지연 기간을 계산해야 함. Case 1 공기연장이 4개월로 제출된 상황에서 승인 받지 못했다면, 코로나로 인한 지연기간은 4개월의 끝점으로부터 계산된 a기간 Case 2 공기연장을 4개월로 제출했고 3개월만 승인 받았다면, 코로나로 인한 지연기간은 3개월의 끝점으로부터 계산된 b기간

1) 방해/간섭 분석방법(Disruption analysis method) 선정

Historic vs Actual					
개요	• 대형 프로젝트일수록 독립적으로 Event의 영향을 분석하기가 쉽지 않기 때문에 유사한 프로젝트의 데이터를 비교하는 방법 적용				
선정 기준	Disruption작업과 비슷한 형태의 작업 기상조건이 유사한 작업기간 비교할만한 지역적인 장소 비교할만한 작업자의 조직상태				
장, 단점	 Disruption 분석이 꼭 동일한 형태의 작업을 비교하는 것은 아니므로 유사한 작업환경의 데이터를 비교하는 것은 가능함 유사 프로젝트의 생산성 분석에 대한 합리적인 증거 제시가 필요함. 				

	Actual vs Actual (Measured Mile)
개요	• Disruption을 받은 구간과 그렇지 않은 구간의 차이를 분석하여, 계획생 산성을 고려하는 것이 아닌 Actual 구간을 분석함
도해	800000 Actual Indirect M/H 400000 Baseline of Indirect M/H Measured Mile of Indirect M/H Measured Mile of Indirect M/H Measured Mile of Indirect M/H (2011) Actual Indirect M/H Unrecovered M/H Measured Mile of Indirect M/H (2012) (2013) Actual Indirect M/H (2014) Unrecovered M/H (2015)
장, 단점	 가장 합리적인 분석방법으로 인정받고 있음. Measured Mile의 결정에 임의적인 판단이 개입할 수 있음.

Industry Studies							
개요	생산성에 대한 연구사례 등을 참고하여 분석 (Mechanical Contractors Association of America (MCAA) Guide)						
	Factor	Percent of Loss if Condition					
	STACKING OF TRADES	Minor 10%	Average 20%	Severe 30%			
411	MORALE AND ATTITUDE	5%	15%	30%			
도해	REASSIGNMENT OF MANPOWER	5%	10%	15%			
	CREW SIZE INEFFICIENCY	10%	20%	30%			
	CONCURRENT OPERATIONS	5%	15%	25%			
	DILUTION OF SUPERVISION	10%	15%	25%			
장, 단점	• 단지 참고용으로 활용될 수 있는 내용임 • 생산성 분석 자료와 같이 제시되어야 함						

1) 방해/간섭 분석방법(Disruption analysis method) 선정

Based	Studies	Method	
Productivity- based Methods	Project- specific studies	Measured mile analysis	
		Earned value analysis	
		Programme analysis	
		Work or trade sampling	
		System dynamics modelling	
	Project-comparison studies		
	Industry studies		
Cost-based Methods	Estimated v incurred labour		
	Estimated v used cost		

Earned value analysis

계산의 기준값은 Tender Allowance에 있는 Manhour이다. 즉 어떤 행위를 수행하기 위해 제출한 Manhour를 기준으로, 실제 소요된 Manhour를 비교하는 방법이다. Manhour가 없는 경우에는 이에 상응하는 Cost를 기준으로 계산할 수도 있다. 그러나 이 방법은 계획값의 합리적인 산출근거를 증명하거나 실제로 그와 같은 계획을 달성했는지가 불분명하기 때문에 정확한 방법으로 보기 어렵다.

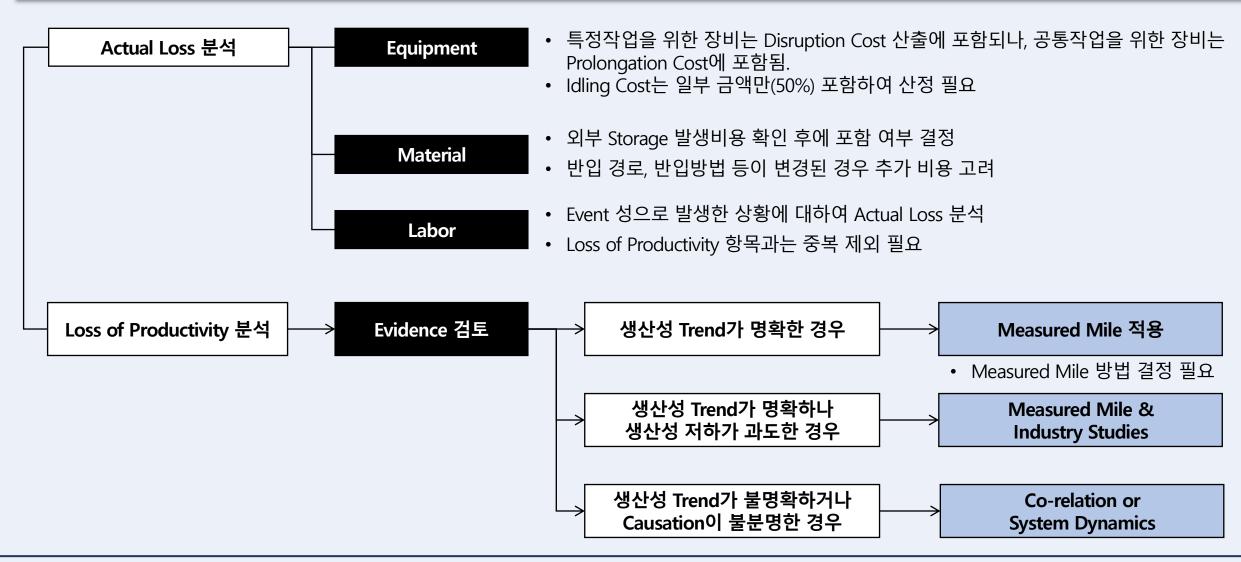
Programme Analysis

이 방법은 프로그램에 할당된 Resource가 있는 경우에 해당 Resource를 기준으로 계산하는 방법이다.

Work or Trade Sampling

실제 달성된 생산성의 기록 중 특별히 관찰된 Sample 구간의 생산성을 기준으로 계산하는 방법이다.

System Dynamics Modelling


17

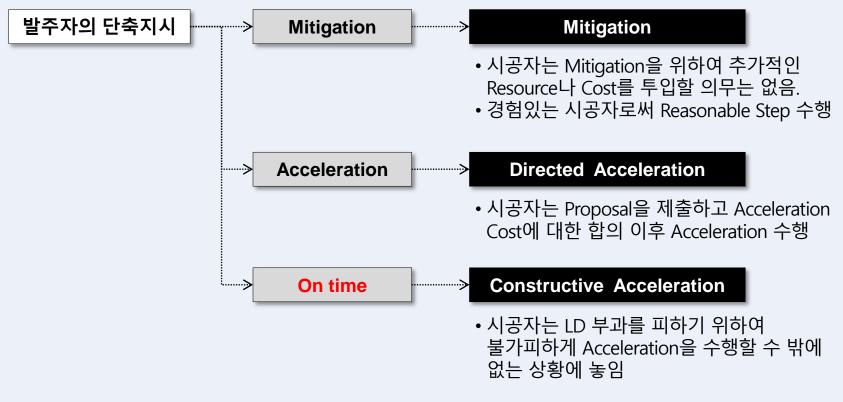
특별한 Program을 사용해서 Simulation하고 Disruption이 발생하지 않는 경우를 가정해서 이 2가지를 비교하는 방법이다. 아직까지는 널리 사용되는 방법은 아니다.

Cost-based Methods

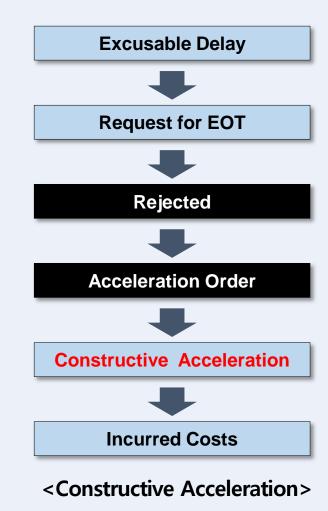
Productivity-based 분석방법이 적용되기 어려울 때 사용되는 방법으로 설득적인 방법은 아니다. 추정노동력과 투입된 노동력을 비교하거나 추정비용과 손실비용을 비교하기도 한다.

1) 방해/간섭 분석방법(Disruption analysis method) 선정

2) 인과관계(Causation) 입증


• Disruption Claim을 입증하는데 있어서 가장 어려운 부분이 Causation이며 이를 입증하는 것에 클레임의 성패가 달려있음.

구분	주요 내용	Point
Plan / Actual	Plan Manpower, ProgressActual Manpower, Progress	 Plan의 내용이 합리적이었다는 것을 입증해야 함. 발주자와의 Communication을 통하여 정상적으로 협의된 과정을 설명해야 함. Contractor's Fault가 부분적으로 포함되어야 합리적인 설명이 될 수 있음.
Measured Mile	Measured MileDisruption Event와의 연관관계	 합리적으로 Measured Mile 구간을 선정했다는 것을 설명해야 함. Disruption Event로 인하여 어떻게 변경되었는지 또는 작업순서에 어떤 영향을 발생시켰는지에 대하여 명확하게 설명되어야 함
Industry Studies	Industry Study 자료Disruption Event와의 연관관계	 단일한 Industry Study 활용보다는 여러 Industry Study를 활용하여 객관적인 수치임을 제시 Overtime, Shift 등의 Disruption Event가 발생한 원인이 계약상대방에게 있음을 강조
Actual Loss	개별적인 Disruption EventActual Loss 입증자료	 Event 중 명확하게 입증이 가능한 Event는 Disruption Claim에 포함하지 말고 개별적으로 분석해서 Change의 Definition으로 적용이 가능한지 여부를 검토해야 함. Actual Loss를 입증할 수 있는 구체적인 증빙자료 (SAP, Payment status) 확보
Co-relation	Disruption EventProgress 또는 대표물량	 개별적으로 설명이 가능한 Event는 분리하여 검토하고, 내용이 중복되지 않도록 검토 필요 Impact Index를 정할 때는 합리적인 기준과 근거를 제시
System Dynamics	Actual LossIndustry Studies	 다른 Alternative (Measured Mile, Modified Total cost) 기법과 같이 검토가 필요함 분석된 상황이 복합적인 원인으로 발생한 상황이라는 점에 대한 설명이 필요함.


Acceleration Claim

1) Constructive Acceleration

• COVID로 인한 지연을 최소화하기 위하여, 발주자가 지시(또는 요청)하는 Acceleration의 의미를 먼저 정확히 확인해야 할 필요가 있음.

• Acceleration 수행 전에 우선적으로 EOT Claim 합의가 필요하나, 여의치 않은 경우 추후에 Constructive Acceleration Logic으로 진행하기 위해서는 EOT 제출, 거절 등의 과정이 필요함.

FTEAM

20

4

Acceleration Claim

1) Constructive Acceleration

(1) Delay and Disruption Protocol 2nd Edition

- Where the Contractor is considering implementing acceleration measures to avoid the risk of liquidated damages as a result of not receiving an EOT that it considers is due, and then pursuing a constructive acceleration claim, the Contractor should first take steps to have the dispute or difference about entitlement to an EOT resolved in accordance with the contract dispute resolution provisions.
 - → Constructive Acceleration 을 수행할 수 밖에 없는 상황에서 가장 먼저 EOT 권리 해결을 위한 절차를 진행해야 함.

(2) EOT 승인 거절 시 BECHTEL 지침

Bechtel is faced with two courses of action

1. Notification of Schedule Extension

Wrongful refusal to grant an EOT will result in the project being completed later than original schedule

2. Notice of Constructive Acceleration

Refusal to grant EOT will as a direction to accelerate the work (Constructive Acceleration)

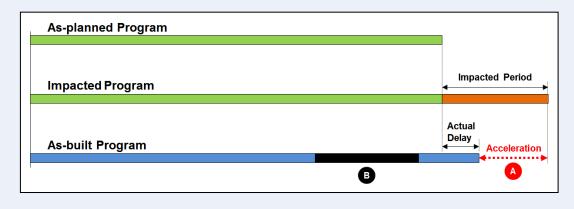
- Schedule Impacts should not be absorbed by acceleration unless acceleration is directed or authorized in writing by the Employer. However, a refusal by the Employer to acknowledge time extensions can constructively cause acceleration and written notice to that effect must be provided by Bechtel to the Employer prior to acceleration.
 - → Employer에게 지시 받지 않았다면, 무리한 Acceleration은 진행하지 말 것을 강조하고 있음.

Acceleration Claim

2) Acceleration plan

• Acceleration Cost 구성

(1) 간접비 or 고정비

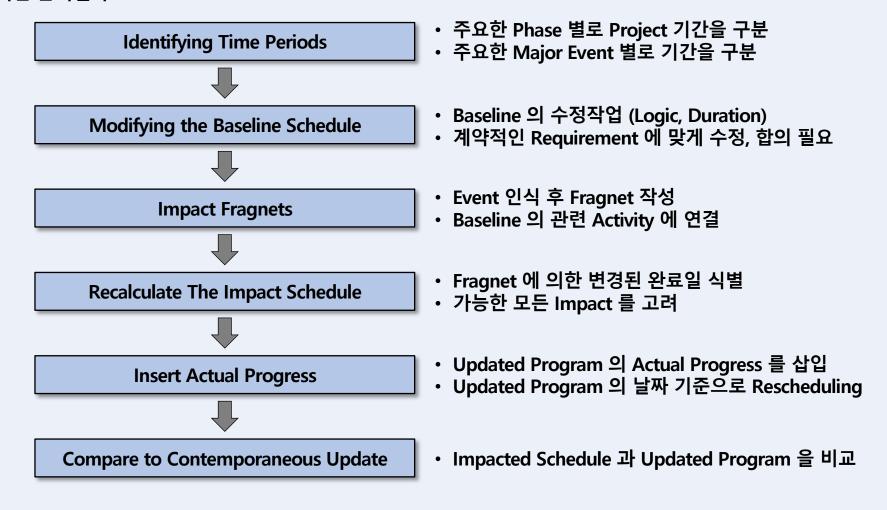

Acceleration 기간에 추가로 투입되는 인원 산정이 가능하나, 단축되는 기간을 고려해서 산정해야 함.

(2) 직접비 (인원, 장비 등)

물량증감이 없다면, 직접비 투입비용은 원칙적으로 청구가 불가능하나, 고려 가능한 항목은 Acceleration 으로 발생한 생산성 저하로 인한 과투입 인원, Overtime, Shift 등에 따른 Premium Wage 가능함.

(3) Incentive

Target 달성에 따른 조건부 형태의 합의된 금액 청구



구분	Acceleration Plan 작성시 고려사항
계약/단축공기	• 계획공기와 단축공기를 비교하여 단축기간을 명확하게 제시
주간작업에 대한 비용산정	• 주간작업에 추가로 투입하는 인력/장비에 대한 비용청구 근거 는 설명하기 어렵기 때문에 Incentive적인 내용을 포함하거나 합리적인 근거 검토
간접공사비 산정	• 직접공사비와 연동하는 항목을 고려하여 검토
적용단가	• 직종별로 적용하는 단가에 대한 합리적인 근거 포함
발주자의 이익	• 조기가동에 따른 발주자의 이익 확인, 강조 필요
이익공유	• 예상 이익에 따른 Incentive 성격의 보상 포함, 구분하여 제시
시공자의 이익	• 공사기간 단축에 따른 간접비 절감부분 표현
Subcontractor	• Subcontractor와 Acceleration 노력 및 성과에 대한 공유
LOP	• Loss of Productivity 와 관련된 추가인원 투입 설명
Milestone	• 성과측정을 위한 기준을 단일한 Milestone 으로 설정하기보다 는 분리하여 부분적인 보상이 가능하도록 협의 필요

Acceleration Claim

2) Acceleration plan

• Acceleration 기간 분석절차

